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The geometrical mode and frequency analyses of a vibrating system can be performed via
the theory of screw. From a screw theoretical standpoint, a vibration mode can be
geometrically interpreted as a pure rotation about the center of vibration in a plane and as
a twisting motion on a screw in a three-dimensional space. This paper presents a method to
diagonalize a spatial sti!ness matrix by use of a parallel axis congruence transformation
when the sti!ness matrix satis"es some conditions. It also describes that the diagonalized
sti!ness matrix can have the planes of symmetry depending on the location of the center of
elasticity. For a system with the planes of symmetry, the vibration modes can be expressed
by the axes of vibration. Analytical solutions for the axes of vibrations have been derived.
The set of axes of vibrations yields the modal matrix and the response at the mass center is
expressed by the reciprocal product between the axes of vibration and the applied wrench.
A numerical example of an application to the vibrational analysis of an optical disc drive has
been presented.

( 2001 Academic Press
1. INTRODUCTION

The vibration modes and frequency responses of a vibrating system can be explained more
clearly via the screw theory, which deals with the dynamics of a rigid body based on the
geometrical theories. From the geometrical point of view, the eigenvectors in the planar
vibration analysis can be interpreted as pure rotations about the center of vibration or pure
translations. In a three-dimensional space, they represent repetitive twisting motions on the
axes of vibration.

Based on the screw theory, Gri!s and Du!y [1] derived the mapping of sti!ness
represented in a correlation form of screws with a symmetric positive-de"nite 6]6 matrix
and presented the general model of a spatial sti!ness by line springs. It has been known that
a general sti!ness matrix cannot be diagonalized by a rigid-body transformation [2]. Lipkin
and Patterson [3] developed a geometrical decomposition method diagonalizing the
sti!ness matrix by a congruence transformation. The decomposition method was
formulated through two singular eigenvalue problems yielding eigenwrenches and
eigentwists. Ciblak [4] de"ned the centers of elasticity, sti!ness, and compliance
representing the geometrical properties of an elastically suspended system. Blanchet [5]
0022-460X/01/150779#17 $35.00/0 ( 2001 Academic Press
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derived a cubic equation for three vibration centers in a plane where those three centers
coalesce.

In this paper, the premises of diagonalize a spatial sti!ness matrix by use of a parallel axis
congruence transformation and their geometrical meanings are presented. It is also shown
that the planes of symmetry of decouple the vibration modes of a system depend on the
location of the center of elasticity. For a system with the planes of symmetry, the analytical
solutions for the axes of vibrations have been derived. In addition, the response of the
system to an applied force has been expressed in terms of the reciprocal product of the axes
of vibrations and the applied wrench, which, in turn, provides one with more clear
geometrical interpretation of the frequency response of the forced vibration.

As a numerical example, an optical disk drive with spring suspensions has been modelled
and its vibration modes and frequency responses have been analyzed so as to illustrate the
applicability of the theoretical development presented in this paper.

2. DIAGONALIZATION OF A STIFFNESS MATRIX

2.1. REPRESENTATION OF A STIFFNESS MATRIX

For an elastically suspended rigid body at the unloaded position in a three-dimensional
space, the mapping of sti!ness can be expressed by a general correlation of screws [1] as follows:

w;"K
G
X< , (1)

where the wrench and in"nitesimal twist are expressed, respectively, in PluK cker's ray
co-ordinates w;"[fTmT]T and X<"[dT /T]T in the axis co-ordinates [6]. Here, f and m are
used to denote the force and moment, and d and / are used to denote the small translational
and angular displacements respectively. K

G
can be expressed in the matrix form with four

3]3 submatrices by

K
G
"C

A B

BT DD . (2)

Gri$s and Du!y [1] derived the sti!ness matrix for a rigid body supported by n line springs
only acting along their axial directions. The sti!ness matrix can be expressed by

K
G
"j K

c
jT, (3)

where the 6]n matrix j is called the Jacobian matrix and expressed by j"[s;
1
,2 , s;

n
], and

s;
i
denotes the line-bound vector of the ith line spring. K

c
is the diagonal matrix whose

diagonal elements are the spring constants k
i
. The line-bound vector can be de"ned by the

unit direction vector of the ith line, s
i
, and its moment vector about the mass center G with

the position vector r
i
to the line:

s;
i
"C

s
i

s
oi
D"C

s
i

r
i
]s

i
D. (4)

Now, substituting equation (4) into equation (3) yields

K
G
"

n
+
i/1

k
i C

s
i
sT
i

r
i
]s

i
sT
i

!s
i
sT
i

r
i
]

!r
i
]s

i
sT
i
r
i
]D , (5)

where ] represents the cross product operator.
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2.2. FREE VECTOR DECOMPOSITION

Lipkin and Patterson [3] developed a congruence transformation in formed from
eigenwrenches and eigentwists that diagonalizes a sti!ness matrix, which was given by

K
G
"C

F 0

M UD C
K

f
0

0

K
(
D C

F 0

M UD
T
"C

FK
f
FT

MK
f
FT

FK
f

MT

MK
f

MT#UK
(

UTD , (6)

where K
f
"diag (k

f1
, k

f2
, k

f3
) and K

(
"diag (k/1 , k/2, k/3). F"[f

1
f
2

f
3
] and

U"[/
1

/
2

/
3
] are the 3]3 submatrices. The vectors f

i
and /

i
are the eigenvectors

obtained from the de"nitions of the eigenwrench and eigentwist as follows:

k
f

f"A f, k
(
/"(D!BT A~1B)/. (7, 8)

In equations (7) and (8), the eigenvalues k
f

and k/ are the linear and angular sti!nesses
respectively. In the 3]3 submatrix M"[m

1
m

2
m

3
], m

i
is obtained from the relation

m
i
"BT f

i
k~1
fi

. F and U are the orthogonal matrices. The full details of the derivation can
be found in Lipkin and Patterson [3].

2.3. DIAGONALIZATION OF A STIFFNESS MATRIX BY A PARALLEL AXIS CONGRUENCE

TRANSFORMATION

This section establishes the geometric conditions that can be used to diagonalize
a sti!ness matrix by the use of a parallel axis congruence transformation. The "rst condition
is that the directions of the eigenwrenches F should be parallel to the axes of the co-ordinate
system, i.e., F is the identity matrix. It can be easily shown that the submatrix A in equation
(7) becomes a diagonal matrix when F is the identity matrix.

The second condition is that A~1B should be skew symmetric. In this case, the following
can be obtained from equation (6):

A~1B#BTA~1"FK~1
f

FTFK
f
MT!MK

f
FTFK~1

f
FT"FMT#MFT"0. (9)

From this, it can be seen that when A~1B is skew symmetric, M is also skew symmetric
because F is the identity matrix. The geometrical relation of M to the eigenwrenches is
given by

m
i
"p

i
f
i
#r

i
]f

i
, (10)

where p
i
is the pitch of the ith eigenwrench and r

i
is the perpendicular vector from G to the

ith eigenwrench. Since the eigenwrenches are parallel to the axes of the co-ordinate system,
r
i
can be expressed by

[r
1

r
2

r
3
]"C

0 r
x2

r
x3

r
y1

0 r
y3

r
z1

r
z2

0 D . (11)

Substituting equation (11) into equation (10) yields

M"C
p
1

!r
z2

r
y3

r
z1

p
2

!r
x3

!r
y1

r
x2

p
3
D . (12)
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Since M is skew symmetric, all the eigenwrenches must intersect at a common point by
equation (12). Geometrically, this implies that the three centers, i.e., the centers of elasticity,
sti!ness, and compliance, coalesce.

Ciblak [4] de"ned the center of elasticity at which A~1B
E

is symmetric and derived the
expression for the vector h from the mass center G to the center of elasticity E as follows:

h]"!

1

2
[A~1B!BT A~1]. (13)

On the assumption that A~1B is skew symmetric, equation (13) can be reduced to

h]"!A~1B. (14)

Using equation (14), the parallel axis congruence transformation can be expressed by

K
E
"ET

h
K

G
E
h
"C

A B
E

BT
E

D
E
D , (15)

where E
h
"C

I
3

h]
0
3

I
3
D in which I

3
and 0

3
are, respectively, 3]3 identity and zero matrices

and

B
E
"Ah]#B, (16)

D
E
"(!h]A#BT) h]!h]B#D. (17)

Substituting equation (14) into equations (16) and (17) yields

B
E
"0

3
, D

E
"!BTA~1B#D. (18, 19)

If U"I
3
, then comparing equation (19) with equation (8) gives

D
E
"K

(
. (20)

In summary, when the conditions that F"U"I
3

and A~1B is skew symmetric are
satis"ed, it has been shown that the spatial sti!ness matrix K

G
can be diagonalized by

a parallel axis congruence transformation to the center of elasticity E. Here, the elements of
the diagonalized sti!ness matrix may be expressed as follows:

k
f1
"k

x
, k

f2
"k

y
, k

f3
"k

z2
, k

(1
"ka , k

(2
"kb, k

(3
"kc , (21)

where the subscripts x, y, z denote the translational directions and a, b, c denote the
rotational directions respectively.

3. CONDITIONS OF THE PLANES OF SYMMETRY

For an elastically supported single rigid body with the 6]6 inertia matrix, M
G
, at the

mass center G, the equation of motion for free vibration can be expressed at the point G by

M
G
XG

G
#K

G
X

G
"0. (22)
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The in"nitesimal twist representing a general displacement in a three-dimensional space can
be expressed by

X
G
"X< e jXt , (23)

where X denotes the natural frequency of the system and X< may be given by

X<"[d
x

d
y

d
z

/
x

/
y

/
z
]T. (24)

When the axes of the co-ordinate frames are chosen to be coincident with the principal
axes of inertia, the inertia matrix can be expressed by the following diagonal matrix:

M
G
"diag (m m m I

x
I
y
I
z
). (25)

Now, substituting equation (23) into equation (22) yields

(K
G
!X2M

G
) X<"0. (26)

If the sti!ness matrix K
G

can be diagonalized by the use of equation (15), using the vector
from E to G, h@, i.e., h@"!h, equation (15) can be rewritten in a form as

K
G
"ET

h{
K

E
E

h{
. (27)

Substituting equation (27) into equation (26) and using equation (25) yields

C
A1 B1
B1 T D1 D X< "0, (28)

where

A1 "C
k
x
!X2m 0 0

0 k
y
!X2m 0

0 0 k
z
!X2mD , B1 "C

0 h
z
k
x

!h
y
k
x

!h
z
k
y

0 h
x
k
y

h
y
k
z

!h
x
k
z

0 D ,

D1 "C
ka#h2

z
k
y
#h2

y
k
z
!I

x
X2 !h

x
h
y
k
z

!h
x
h
z
k
y

!h
x
h
y
k
z

kb#h2
z
k
x
#h2

x
k
z
!I

y
X2 !h

y
h
z
k
x

!h
x
h
z
k
y

!h
y
h
z
k
x

kc#h2
y
k
x
#h2

x
k
y
!I

z
X2D .

(29)

Depending on the arrangement of the sti!ness of a system, the system can have the
planes(s) of symmetry. Harris [7] de"ned the plane of symmetry, but no detailed conditions
for a system to have the planes of symmetry have been given.

Here, the close observation of equation (29) reveals the fact that the vector h provides the
conditions of the planes of symmetry that make the vibration modes of a system decoupled.
That is, if h has a zero element, then vibration modes can be decoupled into two separate
groups. For example, if the z element of h is zero, i.e., h

z
"0, then x}y plane becomes the

plane of symmetry and the vibrations in the co-ordinates d
x
, d

y
, /

z
are coupled but

independent of any vibrations in the other co-ordinates and also the vibrations in the
co-ordinates d

z
, /

x
, /

y
are coupled but independent of the other co-ordinates. For the case
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that h
z
"0, the axes of vibration can be obtained by solving equation (28), which are

expressed in the following forms of line-bound vectors:

Xin"[d
x

d
y
0 0 0 1]T, (30)

Xout"[0 0 d
z
/
x

/
y
0]T. (31)

Here, Xin are the perpendicular axes to the x}y plane and Xout are lying in the x}y plane. The
terms Xin and Xout are called, respectively, in-plane and out-of-plane modes.

In summary, it can be said that, when the sti!ness matrix is diagonalized by a parallel axis
transformation using the vector h (from G to E) with a zero element, there exists one plane of
symmetry to split the solution into two groups: in-plane and out-of-plane vibration modes.

4. AXES OF VIBRATIONS FOR THE PLANES OF SYMMETRY

The solutions of the axes of vibrations can be obtained from the parallel axis congruence
transformation of the sti!ness and inertia matrix to a point on the axis of vibration.
Rewriting equation (26) gives

(ETv@KE
Ev@!X2ETv MG

Ev)Xv"0. (32)

where v@ denotes the vector from the point E to any point on the axis of vibration and v is the
vector from the point G to any point on the axis of vibration, and the transformations are
given by

Ev"C
I
3

v]
0
3

I
3
D, Ev@"C

I
3

v@]
0
3

I
3
D . (33)

Thus, v"v@#h.
In the following two subsections, in order to derive the analytical solution for the axis of

vibration, only the case that the x}y plane is the plane of symmetry is considered since, for
the other cases, the solutions can be obtained in the same manner. In this case, the axes of
vibrations for the in-plane modes intersect the x}y plane perpendicularly and those for the
out-of-plane modes lie in the plane. Thus, the vectors v@ and v can be lain in the x}y plane by
choosing the endpoints of these vectors as the intersecting points for the in-plane modes and
as any point for the out-of-plane modes, respectively. Expanding equation (32) in terms of
the vector v gives two cubic equations, one for the in-plane and the other for the
out-of-plane modes (see Figures 1 and 2).

4.1. FOR IN-PLANE MODES WITH ONE PLANE OF SYMMETRY

The locations of the axes of vibrations of a system with a plane of symmetry can be
expressed by the vector v. When the axis of vibration represented by equation (30) is
rewritten at the intersecting point between the axis of vibration and the x}y plane, it can be
expressed in the form by

Xin
V
"[0 0 0 0 0 1]T. (34)



Figure 1. The axes of vibration for in-plane modes.

Figure 2. The axes of vibration for out-of-plane modes.

GEOMETRICAL MODE AND FREQUENCY ANALYSES 785
To obtain the solution, equation (34) is substituted into equation (32) to yield three
equations in three unknowns X, v

x
, and v

y
:

X2"
(v

y
!h

y
) k

x
v
y
m

, X2"
(v

x
!h

x
) k

y
v
x
m

, X2"
kc#k

x
(v

y
!h

y
)2#k

y
(v

x
!h

x
)2

I
z
#m (v2

x
#v2

y
)

. (35)

Eliminating X between the "rst and second equations in equation (35) gives the relation
v
x

and v
y
,

v
y
"

v
x
h
y
k
x

h
x
k
y
#v

x
(k

x
!k

y
)
. (36)

Again, eliminating X from the "rst and the third equations in equations (35) and using
equation (36) gives the following cubic equation in terms of v

x
:

[k
y
h
x
m (k

y
!k

x
)] v3

x
#[(k

x
!k

y
) (k

y
h2
x
m#kc m!k

y
I
z
)!mk

y
(k

y
h2
x
#k

x
h2
y
)] v2

x

#h
x
k
y
[I

z
(k

x
!2k

y
)#(kc#h2

y
k
x
#h2

x
k
y
)m] v

x
#h2

x
I
z
k2
y
"0. (37)
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Similarly, eliminating X and v
x
from these three equations gives another cubic equation in

terms of v
y
.

From equation (37), when h
x
"0 and/or k

x
"k

y
, the coe$cient of v3

x
vanishes and this

corresponds to one or two pure translational modes. Recalling that we are now consider the
case that h

z
"0 (the plane of symmetry is the x}y plane), the condition h

x
"0 implies that

there exists another plane of symmetry, which becomes the case of two planes of symmetry.
When k

x
"k

y
, the axis of vibration corresponding to this translational mode lies on the line

joining the points G and E.

4.2. FOR OUT-OF-PLANE MODES WITH ONE PLANE OF SYMMETRY

In this case, the vector v can be chosen, without loss of generality, as

v"[v
x

0 0]T (38)

When the axis of vibration represented by equation (31) is rewritten at any point on the
axis of vibration, it can be expressed in the form by

Xout
V
"[0 0 0 /

x
/

y
0]T. (39)

Substituting equations (38) and (39) into equation (32) yields the following three
equations in three unknowns X, /

x
, and /

y
:

/
y

/
x

"

h
y
k
z

(h
x
!v

x
) k

z
#v

x
mX2

, (40)

/
y

/
x

"

ka#h2
y
k
z
!I

x
X2

(h
x
!v

x
) h

y
k
z

, (41)

/
y

/
x

"

(h
x
!v

x
) h

y
k
z

kb#(v
x
!h

x
)2 k

z
!(I

y
#v2

x
m)X2

. (42)

Eliminating /
y
//

x
from equations (40) and (42) yields

X2"
kb

I
y
#h

x
m v

x

. (43)

Also, eliminating /
y
//

x
from equations (40) and (41) and using equation (43) gives the

following cubic equation in terms of v
x
:

h2
x
kakzm2v3

x
!h

x
m [I

x
kbkz!2I

y
kakz#(kakb#h2

x
kakz#h2

y
kbkz)m] v2

x

#[I2
y
kakz

#I
x
kb(kb#h2

x
k
z
)m!I

y
(I

x
kbkz#(kakb#2h2

x
kakz#h2

y
kbkz)m)] v

x

#h
x
I
y
k
z
(I

x
kb!I

y
ka)"0. (44)

Now, the locations of the axes of vibrations, i.e., the values of v
x
, can be obtained from

equation (44) and thereby the natural frequencies X from equation (43). The directions of the
axes of vibrations can be determined by any one of equations (40)}(42).
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In order to completely express the axis of vibration, the value d
z
in equation (31) can be

computed from d"v]/ as

d"C
i j k
v
x

0 0
/

x
/

y
0D"v

x
/
y
k"d

z
k. (45)

In the same manner, by choosing v on the y-axis, another cubic equation can be obtained
in the form that the subscripts x and a in equation (44) are replaced by y and b respectively.

4.3. AXES OF VIBRATION FOR TWO AND THREE PLANES OF SYMMETRY

As discussed in the previous section, the numbers of the planes of symmetry are related to
the numbers of zero components in h. When two components of h become zeros, there exist
two planes of symmetry. In this case, the completely decoupled modes, i.e., a pure
translation and pure rotation mode, are generated along the intersecting line of the planes of
symmetry. In each plane of symmetry, two modes coupled with one translation and one
rotation are generated.

If the x}y and z}x planes are the planes of symmetry, one translational and one rotational
modes about the x-axis are completely independent of the other modes with the natural

frequencies of Jk
x
/m and Jka/Ix . All the remaining axes of vibrations are intersecting the

z-axis.
For the x}y and z}x planes of symmetry, it is clear that h

y
"h

z
"0. The vector v can be

so chosen that v
y
"v

z
"0. For the in-plane modes, substituting equation (34) into equation

(32) yields two equations in two unknowns X, v
x
:

X2"
(v

x
!h

x
) k

y
v
x
m

, X2"
kc#(v

x
!h

x
)2 k

y
I
z
#v2

x
m

. (46)

Eliminating X2 from two equations in equation (46) gives

(mk
y
h
x
) v2

x
#(I

z
k
y
!kcm!h2

x
k
y
m) v

x
!h

x
I
z
k
y
"0. (47)

Solving equation (47) for v
x

gives the locations of the axes of vibrations for the in-plane
modes and the corresponding natural frequencies can be determined from either of the two
equations in equation (46).

For the out-of-plane modes, equation (39) can be expressed in the form

Xout"[0 0 0 0 1 0]T. (48)

Substituting equation (48) into equation (32) yields two equations in two unknowns X, v
x
:

X2"
(v

x
!h

x
) k

z
v
x
m

, X2"
kb#(v

x
!h

x
)2 k

z
I
y
#v2

x
m

. (49)

Eliminating X2 from two equations in equation (49) gives

(mk
z
h
x
) v2

x
#(I

y
k
z
!kbm!h2

x
k
z
m) v

x
!h

x
I
y
k
z
"0. (50)

Now, solving equation (50) for v
x

yields the locations of the axes of vibrations for the
out-of-plane modes and the corresponding natural frequencies are determined from either
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of the two equations in equation (49). For the three planes of symmetry, the vector
h becomes the zero vector, which is the case that the point G and E coalesce, there exist three
planes of symmetry and all the vibration modes are decoupled.

5. FREQUENCY RESPONSE TO FORCED VIBRATION

For an elastically supported single rigid body, equation (22) can be expressed for forced
vibration by

M
G
XG

G
#K

G
X

G
"Q(t). (51)

When harmonic excitation is assumed, the applied force can be expressed by [8]

Q (t)"w; ejut . (52)

where w; is the time-independent applied wrench and u is the angular frequency. The
in"nitesimal twist response can be expressed by

X
G
"X< ejut . (53)

Substituting equations (52) and (53) into equation (51) yields

(K
G
!u2M

G
) X<"w; . (54)

Here, it is noted that the modal matrix is de"ned by the set of the axes of vibrations as

W"[X
1
2 X

6
]. (55)

Using these axes of vibrations in equation (55), the response to the applied wrench can be
expressed by

X< "
6
+
r/1

XT
r

w; X
r

k
r
!u2m

r

"

6
+
r/1

R
r
X

r
k
r
!u2m

r

, (56)

where k
r
and m

r
are the rth diagonal elements in the diagonal matrices WTK

G
W and WTM

G
W

respectively. From equation (56), it can be seen that the rth residue R
r
representing the

in#uence of rth mode on the response is in fact the reciprocal product of the rth-axis of
vibration and the applied wrench.

It is noted that the response function in equation (56) is expressed at the mass center.
When the response at any point G@ on the body is interested, the response at G@ can be
obtained by transforming X< to the point G@ using the vector g@ from G to G@. This can be
expressed by

X<
G{
"C

I
3

!g@]
0
3

I
3
D, X< "

6
+
r/1

R
r C

I
3

!g@]
0
3

I
3
D X

r

k
r
!u2m

r

. (57)

From equation (57), it can be seen that when the interested point G@ is lying on the
rth-axis of vibration, there is no response in translation direction due to that axis mode.
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6. EXAMPLE: AN OPTICAL DISC DRIVE

6.1. DIAGONALIZATION BY A PARALLEL AXIS CONGRUENCE TRANSFORMATION

Figure 3 shows the vibrating system of a rigid body supported by three rubbers which is
one of the typical models of optical disc drives such as Digital Video Disk (DVD),
CD-ROM, and Mini Disk (MD). The equation of motion for this model can be expressed by

M
G
XG

G
#C

G
X0

G
#K

G
X

G
"Q (t), (58)

where the di!erence between equations (51) and (58) is the damping matrix. If a
proportional damping is assumed, the undamped mode analysis can be directly applied.
Choosing the co-ordinate axes along the principal axes of inertia, the mass matrix can be
expressed by equation (25).

Each of the three pieces of rubbers placed between the base and the optical disc drive can
be modelled as three linear springs when the elasticity of rubber is assumed to be constant
as shown in Figure 3. The sti!ness matrix can be obtained from equation (3) and the
submatrices of the sti!ness matrix in equation (2) are computed as follows:

A"C
3k

1
0 0

0 3k
1

0
0 0 3k

2
D , B"C

0 0 k
1
(2l

3
!l

4
)

0 0 k
1
(l
1
!l

2
#l

5
)

!k
2
(2l

3
!l

4
) !k

2
(l
1
!l

2
#l

5
) 0 D ,

D"C
k
2
(2l2

3
#l2

4
) k

2
(l
1
l
2
!l

2
l
3
!l

4
l
5
) 0

k
2
(l
1
l
3
!l

2
l
3
!l

4
l
5
) k

2
(l2
1
#l2

2
#l2

5
) 0

0 0 k
1
(l2
1
#l2

2
#2l2

3
#l2

4
#l2

5
)D .

The conditions that the sti!ness matrix can be diagonalized by a parallel axis congruence
transformation are examined. It can be easily shown that F"I

3
and A~1B is skew

symmetric from the above sti!ness matrix. However, the condition that U"I
3

is not
satis"ed. Here, after some algebra, the relation l

5
"(l

1
!l

2
)/2 can be obtained from

equation (19), which then satis"es this condition. Some physical properties and dimensions
of the optical disc drive used in this example are given in Tables 1 and 2. Using the relation
l
5
"(l

1
!l

2
)/2, the dimension l

5
can be modi"ed from its original value 0)0237 to 0)0052 m

so that the sti!ness matrix can be diagonalized by a parallel axis transformation from the
point G to E.

Now, the co-ordinates of the point E can be computed from equation (14) as

E"(0)0052, !0)0328, 0),

which shows that the x}y plane becomes the plane of symmetry.
Figure 3. The optical disc drive model.



TABLE 1

Inertial and sti+ness properties of the optical disc drive

m 0)168 kg
I
x

0)9662]10~4 kgm2
I
y

2)4447]10~4 kgm2
I
z

3)3026]10~4 kg m2
k
1

2)7]103 N/m
k
2

4)5]103 N/m

TABLE 2

Dimensions of the optical disc drive

l
1

0)0467 m
l
2

0)0363 m
l
3

0)0693 m
l
4

0)0401 m
l
5

0)237 m (modi"ed dimension: 0)0052 m)
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The sti!ness matrix at the point E in equation (15) is computed as

K
E
"1)0 e4]diag(0)8100 0)8100 1)3500 0)0036 0)0016 0)0031).

Since k
x
"k

y
in K

E
, one of the axes of vibrations for in-plane modes is corresponding to the

translational mode lying on the line joining the points G and E, and the natural frequency is

Jk
x
/m.

The damping matrix can be obtained from the scalar multiplication to the sti!ness
matrix, and the damping ratios are computed as

1"(0)0091 0)01840 0)0110 0)0113 0)0130 0)0370).

6.2. THE AXES OF VIBRATIONS

For the in-plane modes, solving equation (37) for v
x

gives

[v
xi
]"[0)0617!0)0029].

The co-ordinates of the intersecting points between the axes of vibrations and the x}y plane
are (0)0167, !0)1057, 0) and (!0)0029, 0)0181, 0). Therefore, the line co-ordinates of the
axes of vibrations can be expressed by

[Xin
i
]"C

!0)1057 0)0181 !0)1561
!0)0167 0)0029 0)9877

0 0 0
0 0 0
0 0 0
1 1 0

D .



GEOMETRICAL MODE AND FREQUENCY ANALYSES 791
Clearly, Xin
1

and Xin
2

represent the rotational modes about the axes of vibration in view of
equation (30), and Xin

3
represents a pure translation mode. The corresponding natural

frequencies are obtained from one of the three equations in equation (35) as

[Xin
i
]"[29)02 58)58 34)95] Hz.

For out-of-plane modes, the solutions of equation (44) are computed as

[v
xi
]"[!0)2480 0)0705 !0)0194],

and from equation (43), the corresponding natural frequencies are

[Xout
i

]"[117)90) 35)82 41)54] Hz.

From one of equations (40)}(42), the directions of the axes can be determined as

Ctan~1 A
/
y

/
x
B
i
D"[1)30603 57)56983 !70)07413],

and the line co-ordinates of the axes of vibrations are

[Xout
3

]"C
0 0 0
0 0 0

!0)0057 0)0595 0)0188
0)9997 0)5363 0)2407
0)0228 0)8440 !0)9706

0 0 0
D .

It is also clear that Xout
1

, Xout
2

and Xout
3

represent the rotational modes about the axes of
vibration in view of equation (31).

Combining the above two matrices representing the in-plane and out-of-plane modes
gives the well-known modal matrix as

W"[Xin
1

Xin
2

Xin
3

Xout
1

Xout
2

Xout
3

].

The axes of vibrations are shown in Figures 4 and 5.

6.3. FREQUENCY RESPONSE TO FORCED VIBRATION

When a proportional damping is added, from the modi"cation of equation (56) the
response can be expressed by

X<"
6
+
r/1

XT
r
w; X

r
k
r
#ujc

r
!u2m

r

"

6
+
r/1

R
r
X

r
k
r
#u j c

r
!u2m

r

, (59)

where c
r
is the rth diagonal element in WTC

G
W.



Figure 4. The axes of vibration in the optical disc drive.
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If the harmonic force is applied to the body of the disc drive due to a harmonic base
excitation along the z-axis, it can be expressed by

Q (t)"K
G

X
b C

0
0
1
0
0
0
D ejut , (60)

where X
b
denotes the amplitude of the base excitation. The time-inependent applied wrench

can be expressed by

w;"X
b
(k

2
#ic

2
) C

0
0
1
h
y

!h
x

0
D . (61)

In the case of the proportional damping, the direction of the wrench is stationary.
Equation (61) show the direction of the wrench is parallel to the z-axis and it passes through
the center of elasticity as shown in Figure 6. Here, it can be seen that the axes of vibrations
for in-plane modes are parallel to the wrench. Therefore, the mutual moments between the
axes of vibrations for in-plane modes and the wrench become zero and there is no in#uence
of the axes of vibrations for in plane on the responses.

The displacement in the direction of the z-axis corresponds to the values of the third row
in equation (59) and has the three resonances associated with the axes of the vibration for
out of plane as shown in Figure 7. When the intersecting point between Xout

2
and Xout

3
is

chosen to observe the response in the direction of the z-axis at that point, it can be seen that
there exists only one resonance (see Figure 8). This is because no translational



Figure 5. Top view of the axes of vibration.

Figure 6. The applied wrench.
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displacements in the direction of the z-axis can be generated by Xout
2

and Xout
3

as discussed in
section 5.

7. CONCLUSION

In this study, the geometrical conditions to diagonalize a spatial sti!ness matrix by the
use of a parallel axis congruence transformation and their geometrical meanings are



Figure 7. The response at the mass center.

Figure 8. The response at the intersecting point of Xout
2

and Xout
3

.
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presented. It is shown that the planes of symmetry to decouple the vibration modes of
a system depend on the location of the center of elasticity. For a system with the planes of
symmetry, the analytical solution for the axes of vibrations have been derived. In addition,
the relation between the applied force and the response of the system is expressed by the
reciprocal product.

As a numerical example, an optical disk drive with spring suspensions has been modelled
and its vibration modes have been analyzed so as to illustrate the applicability of the
theoretical development.
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